Tight Focusing of Optical Beams ; A Review - Part 1 RAKESH

نویسندگان

  • RAKESH KUMAR SINGH
  • P. SENTHILKUMARAN
  • KEHAR SINGH
چکیده

Complex amplitude and polarization distribution of an optical beam plays a dominant role in shaping the focused structure of the beam. It is therefore possible to engineer the focal spot using the pupil function manipulation. Helical phase structure arising due to phase singularity in the wave front plays an important role in shaping the focal spot. Tight focusing of an optical beam produces intensity distribution in the focal volume different from the well-known results based on scalar theory, and polarization distribution shows space variant characteristics. In the present paper, roles of the amplitude-, phase-, and polarization distribution on the tightly focused structure of the optical beams are reviewed. Impact of the helical phase structure in the pupil function engineering and subsequently on the focused structure is discussed with special reference to the authors' investigations at IIT Delhi. Certain applications in which tight focusing is desired are briefly discussed. Some miscellaneous investigations are also mentioned.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific a...

متن کامل

Self-accelerating self-trapped optical beams.

We present self-accelerating self-trapped beams in nonlinear optical media, exhibiting self-focusing and self-defocusing Kerr and saturable nonlinearities, as well as a quadratic response. In Kerr and saturable media such beams are stable under self-defocusing and weak self-focusing, whereas for strong self-focusing the beams off-shoot solitons while their main lobe continues to accelerate. Sel...

متن کامل

Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices.

We analyze the evolution of s111d dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate. Experimental results show the complete sequence of events starting from self-focusing of the strip...

متن کامل

Influence of four-wave mixing and walk-Off on the self-focusing of coupled waves

Four-wave mixing and walk-off between two optical beams are investigated for focusing Kerr media. It is shown that four-wave mixing reinforces the self-focusing of mutually trapped waves by lowering their power threshold for collapse, only when their phase mismatch is small. On the contrary, walk-off inhibits the collapse by detrapping the beams, whose partial centroids experience nonlinear osc...

متن کامل

Self-trapping of "necklace-ring" beams in self-focusing kerr media

Recently, we suggested a type of self-trapped optical beams that can propagate in a stable form in (2+1)D self-focusing Kerr media: Necklace-ring beams [M. Soljacic, S. Sears, and M. Segev, Phys. Rev. Lett. 81, 4851 (1998)]. These self-trapped necklaces slowly expand their ring diameter as they propagate as a result of a net radial force that adjacent "pearls" (azimuthal spots) exert on each ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008